

Self-Powered™ Piezoelectric Active Vibration Suppression

Dr. Kamyar Ghandi

Dr. Nesbitt Hagood, Mr. Jon Leehey

Jun 26-28, 2000

Sponsor: DARPA

Program Manager: Dr. Ephrahim Garcia

45 Manning Park, Billerica, MA *kghandi@ContinuumControl.com* (978) 670-4910

Copyright: Continuum Control Corporation

Continuum Control Corporation

Mission

 Develop and manufacture integrated devices & systems for sensing and control using Smart Materials

Current Focus Areas

- Active Fiber Composites, Single Crystal AFCs
- High Efficiency Electronics, Self-Powered Damping Systems
- Integrated Devices, Energy Harvesting

Status

- Founded July 1998
- Both government R&D and commercial programs

Schedule

Self-Powered™ Vibration Suppression Program

2 Year DARPA funded program (*Dr. E. Garcia*)

Primary Objective:

Design and demonstrate vibration reduction using novel self-powered™ piezoelectric devices and electronics

Technical Program Goals:

- Systems approach: develop tools for integrated systems level analysis of structure, piezoelectrics, and electronics
- Electronics Focus: investigate circuit designs for improved performance
- Experimental Demonstration: explore range of achievable performance

Possible Vibration Suppression Systems

Concept

Characteristics

Passive

- Vibration is reduced by dissipating energy as heat
- simple electronics
- low damping

Active (Powered)

- Externally powered actuators reduce vibration
- 10-100x damping
- Energy dissipated in electronics

Self-Powered™

- Actuators reduce vibration using power from structure
- 10-100x damping
- No external power

Linear vs. Switching Amplifier

Existing Active damping system

- Linear amplifiers
- Poor efficiency, energy wasted as heat
- Require external power

Self-Powered™ damping system

- Use switching amplifier and High Voltage storage elements.
- Energy is harvested from the vibration environment, and used to power actuators for damping.
- No external power required.
- Superior damping to passive piezoelectric shunts.

Power dissipation in a linear amplifier [Warkentin, MIT, 1995]

Modeling Approach

Analytical Modeling

- Restricted to analysis of simple circuits.
- Yields closed form expressions, useful for understanding important trends.

Simulink (Matlab) Simulations

- Allow realistic modeling of more complex nonlinear electronic circuits
- Integrated modeling of structural dynamics, piezoelectric, and electronics.
- Use Simulink model for comparison of different system topologies and parametric studies.

SPICE Simulations

Accurate modeling and design of the actual electronic circuits

Coupled System Modeling

- Synergistic design of Structure, Control System, and Amplifier electronics
 higher performance / lower power
 - Piezo Current Vibration Level Sensor Signal **Actuator Signal** x'=Ax+Bu Controller **Amplifier** y=Cx+Du Disturbance Piezo Voltage Nonlinear State Space **Amplifier Model** Structural Model

Electronics Development

- Several generations of self-powered[™] circuits have been implemented.
- Latest circuit designed for 600V.
- Good correlation between SPICE simulations and circuit performance.

Laboratory Demonstration Testbed

Structure

- 6"x12" cantilevered fiberglass plate
- 4 Active Fiber Composite (AFC)
 Actuators (2"x5" each)
- First Mode: 9Hz

Disturbance Source

 Ling Dynamic System V408 Shaker (22lbf)

Active Fiber Composite Actuators

- High Performance, Conformable, Robust, Directional
- twice the strain energy density of 3-1 mode monolithic piezoceramics

Experimental Demonstration

Operation

 Self-powered[™] switching electronics amplify and phase shift piezo voltage to produce damping

Results

- No external HV power required. The vibration of structure charges storage capacitor to as high as 500V.
- Increased damping observed with self-powered[™] damping module, in both steady state and transient operation.

Steady State Response

Self-Powered™ High Voltage Supply

- Switching Amplifier allows bidirectional power flow
- high voltage storage element is charged up using power extracted from piezoelectric actuators
- Storage element can power actuators

Experimental Data – **Externally Powered Active Damping**

System

- Proprietary switching amplifier with external power supply
- Proprietary control algorithm

Results

Closed Loop reduction in vibration amplitude: 5.8dB

Experimental Data – Self-PoweredTM Active Damping I

System

- Proprietary switching amplifier with self-powered™ High Voltage supply
- Proprietary control algorithm

Results

Closed Loop reduction in vibration amplitude: 5.7dB

Experimental Data — Self-PoweredTM Active Damping II

System

- Proprietary switching amplifier with self-powered[™] high voltage supply
- Step-down converter for powering low voltage electronics

Results

Closed loop reduction in vibration amplitude: 3.6db

Experimental Frequency Response Data

- Self-powered[™] and externally powered systems have comparable performance at design frequency.
- Off design frequency, externally powered control system may actually increase vibration level.
- Lack of external energy source means Self-powered[™] system can not suffer from gain instability.
- Fertile ground for further control development

Frequency (Hz)

Due to the high system nonlinearity, frequency response data is dependent on signal amplitude

Results Summary

- Developed fully integrated structural/electrical numerical models of Self-Powered™ Damping system
- Successfully demonstrated Self-Powered[™] Vibration Suppression System experimentally.
- Increased damping observed with Self-powered[™] damping module, in both steady state and transient operation.
- No external High Voltage power required. The vibration of structure charges storage capacitor to as high as 500V.
- Performance of Self-powered[™] system comparable to an externally powered control system in damping persistent vibrations.
- Initial implementation of step-down converter for powering the entire control circuit

Future Work

Electronics optimization

- Reduce power requirements of the sensor/control electronics
- Reduce inefficiencies in the switching amplifier electronics

Design for more complex disturbance sources

- White noise vibration environment
- More sophisticated control algorithms

Development of Self-Powered™ Vibration Suppression Patch

- Design/Integration of Actuator and Self-Powered[™] electronics into a self contained patch
- Prototype manufacturing and testing

Feasibility study for full scale system

Future Circuit Improvements

The components required for Self-powered[™] damping circuitry have several stringent requirements.

- MOSFET requirements:
 - High voltage, low current.
 - Available HV MOSFETs are designed for high power/current.
- Inductor requirements:
 - High inductance, high voltage, low current.
 - Available inductors are design for:
 - Switching power supplies (high voltage/current, but relatively low inductance).
 - RF applications (high inductance, but low voltage/current).

